logo

Ús del teorema xinès de la resta per combinar equacions modulars

Donades N equacions modulars: A ? x1mod (m1) . . A ? xnmod (mn) Troba x a l'equació A ? xmod (m1*m2*m3..*mn) on miés primer o una potència d'un primer i i pren valors d'1 a n. L'entrada es dóna com a dues matrius, la primera és una matriu que conté valors de cada xii la segona matriu que conté el conjunt de valors de cada primer. miEmet un nombre enter per al valor de x a l'equació final. 

Exemples: 

Consider the two equations A ? 2mod(3) A ? 3mod(5)   Input :   2 3 3 5   Output :    8 Consider the four equations A ? 3mod(4) A ? 4mod(7) A ? 1mod(9) (32) A ? 0mod(11)   Input :   3 4 1 0 4 7 9 11   Output :   1243

Explicació: Pretenem resoldre aquestes equacions dues a la vegada. Combinem les dues primeres equacions i utilitzem aquest resultat per combinar-lo amb la tercera equació i així successivament. El procés de combinar dues equacions s'explica de la següent manera prenent l'exemple 2 com a referència:



  1. A ? 3mod(4) i A ? 4mod(7) són les dues equacions que ens proporcionen al principi. Sigui l'equació resultant una A? xmod (m1* m2).
    • Ave donada per m1'*m1* x+ m'*m* x1on m1' = inversa modular de m1mòdul mi m' = inversa modular de mmòdul m1
    • Podem calcular la inversa modular mitjançant un algorisme euclidià estès.
    • Trobem xser Amod (m1* m2)
    • Aconseguim que la nostra nova equació sigui A ? 11mod(28) on A és 95
  2. Ara intentem combinar això amb l'equació 3 i per un mètode similar obtenim A ? 235mod(252) on A = 2503
  3. I finalment en combinar això amb l'equació 4 obtenim A ? 1243mod(2772) on A = 59455 i x = 1243

Observem que 2772 és correctament igual a 4 * 7 * 9 * 11. Així hem trobat el valor de x per a l'equació final. Podeu consultar Algorisme euclidià estès i Invers multiplicatiu modular per obtenir informació addicional sobre aquests temes. 

números romans 1-100
C++
// C++ program to combine modular equations // using Chinese Remainder Theorem #include   using namespace std; // function that implements Extended euclidean // algorithm vector<int> extended_euclidean(int aint b){  if(a == 0){  vector<int> temp;  temp.push_back(b);  temp.push_back(0);  temp.push_back(1);   return temp;  }  else{  vector<int> temp(3);  temp= extended_euclidean(b % a a);  int g = temp[0];  int y = temp[1];  int x = temp[2];  temp[0] = g;  temp[1] = x - ((b/a) * y);  temp[2] = y;  return temp;  }  vector<int> temp;  return temp; } // modular inverse driver function int modinv(int aint m){  vector<int> temp(3);  temp = extended_euclidean(a m);  int g = temp[0];  int x = temp[1];  int y = temp[2];    // Since we are taking the modulo of   // negative numbers so to have positive   // output of the modulo we use this formula.   int ans = x - (floor(x/(float)m) * m);  return ans; }   // function implementing Chinese remainder theorem // list m contains all the modulii // list x contains the remainders of the equations int crt(vector<int> &mvector<int> & x) {    // We run this loop while the list of  // remainders has length greater than 1  while(1)  {    // temp1 will contain the new value   // of A. which is calculated according   // to the equation m1' * m1 * x0 + m0'  // * m0 * x1  int var1 = (modinv(m[1]m[0]));  int var2 = (modinv(m[0]m[1]) );  // cout << var1 << ' ' << var2 << endl;  int temp1 = (modinv(m[1]m[0])) * x[0] * m[1] + (modinv(m[0]m[1]) )* x[1] * m[0];  // temp2 contains the value of the modulus  // in the new equation which will be the   // product of the modulii of the two  // equations that we are combining  int temp2 = m[0] * m[1];  // cout << temp1<< ' '<  // we then remove the first two elements  // from the list of remainders and replace  // it with the remainder value which will  // be temp1 % temp2  x.erase(x.begin());  x.erase(x.begin());  x.insert(x.begin() temp1%temp2);  //we then remove the first two values from  //the list of modulii as we no longer require  // them and simply replace them with the new   // modulii that we calculated  m.erase(m.begin());  m.erase(m.begin());  m.insert(m.begin() temp2);  // once the list has only one element left  // we can break as it will only contain   // the value of our final remainder  if(x.size()== 1){  break;  }  }    // returns the remainder of the final equation  return x[0]; } // driver segment int main(){  vector<int> m = {4 7 9 11};  vector<int> x = {3 4 1 0};  cout << crt(m x) << endl;  return 0; } // The code is contributed by Gautam goel (gautamgoe962) 
Java
// Java program to implement the Chinese Remainder Theorem import java.util.ArrayList; import java.math.BigInteger; public class ChineseRemainderTheorem {  // Function to calculate the modular inverse of a and m  public static BigInteger modinv(BigInteger a BigInteger m) {  BigInteger m0 = m;  BigInteger y = BigInteger.ZERO;  BigInteger x = BigInteger.ONE;  if (m.equals(BigInteger.ONE))  return BigInteger.ZERO;  while (a.compareTo(BigInteger.ONE) == 1) {  BigInteger q = a.divide(m);  BigInteger t = m;  m = a.mod(m);  a = t;  t = y;  y = x.subtract(q.multiply(y));  x = t;  }  if (x.compareTo(BigInteger.ZERO) == -1)  x = x.add(m0);  return x;  }  // Function to implement the Chinese Remainder Theorem  public static BigInteger crt(ArrayList<BigInteger> m ArrayList<BigInteger> x) {  BigInteger M = BigInteger.ONE;  for (int i = 0; i < m.size(); i++) {  M = M.multiply(m.get(i));  }  BigInteger result = BigInteger.ZERO;  for (int i = 0; i < m.size(); i++) {  BigInteger Mi = M.divide(m.get(i));  BigInteger MiInv = modinv(Mi m.get(i));  result = result.add(x.get(i).multiply(Mi).multiply(MiInv));  }  return result.mod(M);  }  public static void main(String[] args) {  ArrayList<BigInteger> m = new ArrayList<>();  ArrayList<BigInteger> x = new ArrayList<>();  m.add(BigInteger.valueOf(4));  m.add(BigInteger.valueOf(7));  m.add(BigInteger.valueOf(9));  m.add(BigInteger.valueOf(11));  x.add(BigInteger.valueOf(3));  x.add(BigInteger.valueOf(4));  x.add(BigInteger.valueOf(1));  x.add(BigInteger.valueOf(0));  System.out.println(crt(m x));  } } // This code is contributed by Vikram_Shirsat 
Python
# Python 2.x program to combine modular equations # using Chinese Remainder Theorem # function that implements Extended euclidean # algorithm def extended_euclidean(a b): if a == 0: return (b 0 1) else: g y x = extended_euclidean(b % a a) return (g x - (b // a) * y y) # modular inverse driver function def modinv(a m): g x y = extended_euclidean(a m) return x % m # function implementing Chinese remainder theorem # list m contains all the modulii # list x contains the remainders of the equations def crt(m x): # We run this loop while the list of # remainders has length greater than 1 while True: # temp1 will contain the new value  # of A. which is calculated according  # to the equation m1' * m1 * x0 + m0' # * m0 * x1 temp1 = modinv(m[1]m[0]) * x[0] * m[1] +  modinv(m[0]m[1]) * x[1] * m[0] # temp2 contains the value of the modulus # in the new equation which will be the  # product of the modulii of the two # equations that we are combining temp2 = m[0] * m[1] # we then remove the first two elements # from the list of remainders and replace # it with the remainder value which will # be temp1 % temp2 x.remove(x[0]) x.remove(x[0]) x = [temp1 % temp2] + x # we then remove the first two values from # the list of modulii as we no longer require # them and simply replace them with the new  # modulii that we calculated m.remove(m[0]) m.remove(m[0]) m = [temp2] + m # once the list has only one element left # we can break as it will only contain  # the value of our final remainder if len(x) == 1: break # returns the remainder of the final equation return x[0] # driver segment m = [4 7 9 11] x = [3 4 1 0] print crt(m x) 
C#
using System; using System.Collections; using System.Collections.Generic; using System.Linq; // C# program to combine modular equations // using Chinese Remainder Theorem class HelloWorld {  // function that implements Extended euclidean  // algorithm  public static List<int> extended_euclidean(int aint b){  if(a == 0){  List<int> temp = new List<int>();  temp.Add(b);  temp.Add(0);  temp.Add(1);   return temp;  }  else{  List<int> temp = new List<int>();  temp.Add(0);  temp.Add(0);  temp.Add(0);  temp= extended_euclidean(b % a a);  int g = temp[0];  int y = temp[1];  int x = temp[2];  temp[0] = g;  temp[1] = x - ((b/a) * y);  temp[2] = y;  return temp;  }  List<int> temp1 = new List<int>();  return temp1;  }  // modular inverse driver function  public static double modinv(int aint m){  List<int> temp = new List<int>();  temp.Add(0);  temp.Add(0);  temp.Add(0);  temp = extended_euclidean(a m);  int g = temp[0];  int x = temp[1];  int y = temp[2];  // Since we are taking the modulo of   // negative numbers so to have positive   // output of the modulo we use this formula.   double val = Math.Floor(((double)x/(double)m));  double ans = x - (val * m);  return ans;  }  // function implementing Chinese remainder theorem  // list m contains all the modulii  // list x contains the remainders of the equations  public static int crt(List<int> mList<int> x)  {  // We run this loop while the list of  // remainders has length greater than 1  while(true)  {  // temp1 will contain the new value   // of A. which is calculated according   // to the equation m1' * m1 * x0 + m0'  // * m0 * x1  double var1 = (modinv(m[1]m[0]));  double var2 = (modinv(m[0]m[1]));  // cout << var1 << ' ' << var2 << endl;  double temp1 = (modinv(m[1]m[0])) * x[0] * m[1] + (modinv(m[0]m[1]) )* x[1] * m[0];  // temp2 contains the value of the modulus  // in the new equation which will be the   // product of the modulii of the two  // equations that we are combining  int temp2 = m[0] * m[1];  // cout << temp1<< ' '<  // we then remove the first two elements  // from the list of remainders and replace  // it with the remainder value which will  // be temp1 % temp2  x.RemoveAt(0);  x.RemoveAt(0);  x.Insert(0 (int)temp1%(int)temp2);  //we then remove the first two values from  //the list of modulii as we no longer require  // them and simply replace them with the new   // modulii that we calculated  m.RemoveAt(0);  m.RemoveAt(0);  m.Insert(0 temp2);  // once the list has only one element left  // we can break as it will only contain   // the value of our final remainder  if(x.Count == 1){  break;  }  }  // returns the remainder of the final equation  return x[0];  }  static void Main() {  List<int> m = new List<int>(){  4 7 9 11  };  List<int> x = new List<int> (){  3 4 1 0  };  Console.WriteLine(crt(m x));  } } // The code is contributed by Nidhi goel.  
JavaScript
// JavaScript program to combine modular equations // using Chinese Remainder Theorem // function that implements Extended euclidean // algorithm function extended_euclidean(a b){  if(a == 0){  let temp = [b 0 1];  return temp;  }  else{  let temp= extended_euclidean(b % a a);  let g = temp[0];  let y = temp[1];  let x = temp[2];  temp[0] = g;  temp[1] = x - (Math.floor(b/a) * y);  temp[2] = y;  return temp;  }  let temp;  return temp; } // modular inverse driver function function modinv(a m){  let temp = extended_euclidean(a m);  let g = temp[0];  let x = temp[1];  let y = temp[2];    // Since we are taking the modulo of   // negative numbers so to have positive   // output of the modulo we use this formula.   let ans = x - (Math.floor(x/m) * m);  return ans; }   // function implementing Chinese remainder theorem // list m contains all the modulii // list x contains the remainders of the equations function crt(m x) {    // We run this loop while the list of  // remainders has length greater than 1  while(1)  {    // temp1 will contain the new value   // of A. which is calculated according   // to the equation m1' * m1 * x0 + m0'  // * m0 * x1  let var1 = (modinv(m[1]m[0]));  let var2 = (modinv(m[0]m[1]) );  // cout << var1 << ' ' << var2 << endl;  let temp1 = (modinv(m[1]m[0])) * x[0] * m[1] + (modinv(m[0]m[1]) )* x[1] * m[0];  // temp2 contains the value of the modulus  // in the new equation which will be the   // product of the modulii of the two  // equations that we are combining  let temp2 = m[0] * m[1];  // cout << temp1<< ' '<  // we then remove the first two elements  // from the list of remainders and replace  // it with the remainder value which will  // be temp1 % temp2  x.shift();  x.shift();  x.unshift(temp1 % temp2);  //we then remove the first two values from  //the list of modulii as we no longer require  // them and simply replace them with the new   // modulii that we calculated  m.shift();  m.shift();  m.unshift(temp2);  // once the list has only one element left  // we can break as it will only contain   // the value of our final remainder  if(x.length== 1){  break;  }  }    // returns the remainder of the final equation  return x[0]; } // driver segment let m = [4 7 9 11]; let x = [3 4 1 0]; console.log(crt(m x)); // The code is contributed by phasing17 

Sortida:

1243

Complexitat temporal: O(l) on l és la mida de la llista de restes.

Complexitat espacial: O(1) ja que no estem utilitzant cap espai addicional.

Aquest teorema i algorisme té excel·lents aplicacions. Una aplicació molt útil és el càlculnCr% m on m no és un nombre primer i Teorema de Lucas no es pot aplicar directament. En aquest cas, podem calcular els factors primers de m i utilitzar els factors primers un per un com a mòdul en el nostrenCrEquació % m que podem calcular mitjançant el teorema de Lucas i després combinar les equacions resultants junts utilitzant el teorema de la resta xinès que es mostra a dalt.

Crea un qüestionari