Problema: Tenint en compte el procés I i J, heu d’escriure un programa que pugui garantir l’exclusió mútua entre tots dos sense cap suport de maquinari addicional.
Malbaratament de cicles de rellotge de la CPU
En termes laics quan un fil esperava el seu torn, va acabar en un bucle llarg que va provar la condició de milions de vegades per segon fent càlcul innecessari. Hi ha una manera millor d’esperar i es coneix com a 'Rendiment' .
Per entendre el que fa, hem de aprofundir en el funcionament del planificador de processos a Linux. La idea esmentada aquí és una versió simplificada del planificador La implementació real té moltes complicacions.
Penseu en l'exemple següent
Hi ha tres processos P1 P2 i P3. El procés P3 és tal que té un bucle similar al del nostre codi que no fa un càlcul tan útil i existeix del bucle només quan P2 acaba la seva execució. El planificador els posa en una cua de Robin rodó. Ara diguem que la velocitat del rellotge del processador és de 1000000/seg i assigna 100 rellotges a cada procés en cada iteració. A continuació, primer P1 s’executarà durant 100 rellotges (0,0001 segons) i després P2 (0,0001 segons) seguit de P3 (0,0001 segons) ara, ja que ja no hi ha més processos que aquest cicle es repeteixi fins que P2 s’acabi i després segueixi l’execució de P3 i, eventualment, la seva finalització.
Es tracta d’un malbaratament complet dels 100 cicles de rellotge de CPU. Per evitar -ho, renunciem mútuament a la llesca de temps de la CPU, és a dir, el rendiment que acaba essencialment aquesta llesca de temps i el planificador recull el següent procés per funcionar. Ara posem a prova la nostra condició una vegada que renunciem a la CPU. Tenint en compte que la nostra prova fa 25 cicles de rellotge, estalviem el 75% del nostre càlcul en una llesca de temps. Per dir -ho gràficament
Tenint en compte la velocitat del rellotge del processador com a 1MHz, això és molt estalvi!.
Les diferents distribucions proporcionen una funció diferent per aconseguir aquesta funcionalitat. Linux proporciona programació_yield () .
void lock(int self) { flag[self] = 1; turn = 1-self; while (flag[1-self] == 1 && turn == 1-self) // Only change is the addition of // sched_yield() call sched_yield(); }
Tanca de memòria.
El codi del tutorial anterior podria haver treballat en la majoria de sistemes, però no era 100% correcte. La lògica era perfecta, però la majoria de les CPU modernes utilitzen optimitzacions de rendiment que poden donar lloc a una execució fora d’ordre. Aquesta reordenació de les operacions de memòria (càrregues i botigues) normalment passa desapercebuda dins d’un sol fil d’execució, però pot causar un comportament imprevisible en programes concurrents.
Considereu aquest exemple
C
while (f == 0); // Memory fence required here print x;
A l'exemple anterior, el compilador considera les dues declaracions com a independents les unes de les altres i, per tant, intenta augmentar l'eficiència del codi reordenant-les, cosa que pot comportar problemes per a programes concurrents. Per evitar -ho, posem una tanca de memòria per donar suggeriment al compilador sobre la possible relació entre les declaracions a través de la barrera.
Així doncs, l’ordre de les declaracions
Bandera [self] = 1;
gir = 1-jo;
Mentre (comprova la condició de gir)
rendiment ();
Ha de ser exactament el mateix per tal que el pany funcioni, en cas contrari, acabarà en un punt mort.
Per assegurar -se que els compiladors proporcionen una instrucció que impedeixi la comanda de declaracions a aquesta barrera. En cas de GCC it __sync_synchronize () .
Per tant, el codi modificat es converteix
Implementació completa a C:
// Filename: peterson_yieldlock_memoryfence.cpp // Use below command to compile: // g++ -pthread peterson_yieldlock_memoryfence.cpp -o peterson_yieldlock_memoryfence #include #include #include std::atomic<int> flag[2]; std::atomic<int> turn; const int MAX = 1e9; int ans = 0; void lock_init() { // Initialize lock by resetting the desire of // both the threads to acquire the locks. // And giving turn to one of them. flag[0] = flag[1] = 0; turn = 0; } // Executed before entering critical section void lock(int self) { // Set flag[self] = 1 saying you want // to acquire lock flag[self]=1; // But first give the other thread the // chance to acquire lock turn = 1-self; // Memory fence to prevent the reordering // of instructions beyond this barrier. std::atomic_thread_fence(std::memory_order_seq_cst); // Wait until the other thread loses the // desire to acquire lock or it is your // turn to get the lock. while (flag[1-self]==1 && turn==1-self) // Yield to avoid wastage of resources. std::this_thread::yield(); } // Executed after leaving critical section void unlock(int self) { // You do not desire to acquire lock in future. // This will allow the other thread to acquire // the lock. flag[self]=0; } // A Sample function run by two threads created // in main() void func(int s) { int i = 0; int self = s; std::cout << 'Thread Entered: ' << self << std::endl; lock(self); // Critical section (Only one thread // can enter here at a time) for (i=0; i<MAX; i++) ans++; unlock(self); } // Driver code int main() { // Initialize the lock lock_init(); // Create two threads (both run func) std::thread t1(func 0); std::thread t2(func 1); // Wait for the threads to end. t1.join(); t2.join(); std::cout << 'Actual Count: ' << ans << ' | Expected Count: ' << MAX*2 << std::endl; return 0; }
C // Filename: peterson_yieldlock_memoryfence.c // Use below command to compile: // gcc -pthread peterson_yieldlock_memoryfence.c -o peterson_yieldlock_memoryfence #include #include #include 'mythreads.h' int flag[2]; int turn; const int MAX = 1e9; int ans = 0; void lock_init() { // Initialize lock by resetting the desire of // both the threads to acquire the locks. // And giving turn to one of them. flag[0] = flag[1] = 0; turn = 0; } // Executed before entering critical section void lock(int self) { // Set flag[self] = 1 saying you want // to acquire lock flag[self]=1; // But first give the other thread the // chance to acquire lock turn = 1-self; // Memory fence to prevent the reordering // of instructions beyond this barrier. __sync_synchronize(); // Wait until the other thread loses the // desire to acquire lock or it is your // turn to get the lock. while (flag[1-self]==1 && turn==1-self) // Yield to avoid wastage of resources. sched_yield(); } // Executed after leaving critical section void unlock(int self) { // You do not desire to acquire lock in future. // This will allow the other thread to acquire // the lock. flag[self]=0; } // A Sample function run by two threads created // in main() void* func(void *s) { int i = 0; int self = (int *)s; printf('Thread Entered: %dn'self); lock(self); // Critical section (Only one thread // can enter here at a time) for (i=0; i<MAX; i++) ans++; unlock(self); } // Driver code int main() { pthread_t p1 p2; // Initialize the lock lock_init(); // Create two threads (both run func) Pthread_create(&p1 NULL func (void*)0); Pthread_create(&p2 NULL func (void*)1); // Wait for the threads to end. Pthread_join(p1 NULL); Pthread_join(p2 NULL); printf('Actual Count: %d | Expected Count:' ' %dn'ansMAX*2); return 0; }
Java import java.util.concurrent.atomic.AtomicInteger; public class PetersonYieldLockMemoryFence { static AtomicInteger[] flag = new AtomicInteger[2]; static AtomicInteger turn = new AtomicInteger(); static final int MAX = 1000000000; static int ans = 0; static void lockInit() { flag[0] = new AtomicInteger(); flag[1] = new AtomicInteger(); flag[0].set(0); flag[1].set(0); turn.set(0); } static void lock(int self) { flag[self].set(1); turn.set(1 - self); // Memory fence to prevent the reordering of instructions beyond this barrier. // In Java volatile variables provide this guarantee implicitly. // No direct equivalent to atomic_thread_fence is needed. while (flag[1 - self].get() == 1 && turn.get() == 1 - self) Thread.yield(); } static void unlock(int self) { flag[self].set(0); } static void func(int s) { int i = 0; int self = s; System.out.println('Thread Entered: ' + self); lock(self); // Critical section (Only one thread can enter here at a time) for (i = 0; i < MAX; i++) ans++; unlock(self); } public static void main(String[] args) { // Initialize the lock lockInit(); // Create two threads (both run func) Thread t1 = new Thread(() -> func(0)); Thread t2 = new Thread(() -> func(1)); // Start the threads t1.start(); t2.start(); try { // Wait for the threads to end. t1.join(); t2.join(); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println('Actual Count: ' + ans + ' | Expected Count: ' + MAX * 2); } }
Python import threading flag = [0 0] turn = 0 MAX = 10**9 ans = 0 def lock_init(): # This function initializes the lock by resetting the flags and turn. global flag turn flag = [0 0] turn = 0 def lock(self): # This function is executed before entering the critical section. It sets the flag for the current thread and gives the turn to the other thread. global flag turn flag[self] = 1 turn = 1 - self while flag[1-self] == 1 and turn == 1-self: pass def unlock(self): # This function is executed after leaving the critical section. It resets the flag for the current thread. global flag flag[self] = 0 def func(s): # This function is executed by each thread. It locks the critical section increments the shared variable and then unlocks the critical section. global ans self = s print(f'Thread Entered: {self}') lock(self) for _ in range(MAX): ans += 1 unlock(self) def main(): # This is the main function where the threads are created and started. lock_init() t1 = threading.Thread(target=func args=(0)) t2 = threading.Thread(target=func args=(1)) t1.start() t2.start() t1.join() t2.join() print(f'Actual Count: {ans} | Expected Count: {MAX*2}') if __name__ == '__main__': main()
JavaScript class PetersonYieldLockMemoryFence { static flag = [0 0]; static turn = 0; static MAX = 1000000000; static ans = 0; // Function to acquire the lock static async lock(self) { PetersonYieldLockMemoryFence.flag[self] = 1; PetersonYieldLockMemoryFence.turn = 1 - self; // Asynchronous loop with a small delay to yield while (PetersonYieldLockMemoryFence.flag[1 - self] == 1 && PetersonYieldLockMemoryFence.turn == 1 - self) { await new Promise(resolve => setTimeout(resolve 0)); } } // Function to release the lock static unlock(self) { PetersonYieldLockMemoryFence.flag[self] = 0; } // Function representing the critical section static func(s) { let i = 0; let self = s; console.log('Thread Entered: ' + self); // Lock the critical section PetersonYieldLockMemoryFence.lock(self).then(() => { // Critical section (Only one thread can enter here at a time) for (i = 0; i < PetersonYieldLockMemoryFence.MAX; i++) { PetersonYieldLockMemoryFence.ans++; } // Release the lock PetersonYieldLockMemoryFence.unlock(self); }); } // Main function static main() { // Create two threads (both run func) const t1 = new Thread(() => PetersonYieldLockMemoryFence.func(0)); const t2 = new Thread(() => PetersonYieldLockMemoryFence.func(1)); // Start the threads t1.start(); t2.start(); // Wait for the threads to end. setTimeout(() => { console.log('Actual Count: ' + PetersonYieldLockMemoryFence.ans + ' | Expected Count: ' + PetersonYieldLockMemoryFence.MAX * 2); } 1000); // Delay for a while to ensure threads finish } } // Define a simple Thread class for simulation class Thread { constructor(func) { this.func = func; } start() { this.func(); } } // Run the main function PetersonYieldLockMemoryFence.main();
C++ // mythread.h (A wrapper header file with assert statements) #ifndef __MYTHREADS_h__ #define __MYTHREADS_h__ #include #include #include // Function to lock a pthread mutex void Pthread_mutex_lock(pthread_mutex_t *m) { int rc = pthread_mutex_lock(m); assert(rc == 0); // Assert that the mutex was locked successfully } // Function to unlock a pthread mutex void Pthread_mutex_unlock(pthread_mutex_t *m) { int rc = pthread_mutex_unlock(m); assert(rc == 0); // Assert that the mutex was unlocked successfully } // Function to create a pthread void Pthread_create(pthread_t *thread const pthread_attr_t *attr void *(*start_routine)(void*) void *arg) { int rc = pthread_create(thread attr start_routine arg); assert(rc == 0); // Assert that the thread was created successfully } // Function to join a pthread void Pthread_join(pthread_t thread void **value_ptr) { int rc = pthread_join(thread value_ptr); assert(rc == 0); // Assert that the thread was joined successfully } #endif // __MYTHREADS_h__
C // mythread.h (A wrapper header file with assert // statements) #ifndef __MYTHREADS_h__ #define __MYTHREADS_h__ #include #include #include void Pthread_mutex_lock(pthread_mutex_t *m) { int rc = pthread_mutex_lock(m); assert(rc == 0); } void Pthread_mutex_unlock(pthread_mutex_t *m) { int rc = pthread_mutex_unlock(m); assert(rc == 0); } void Pthread_create(pthread_t *thread const pthread_attr_t *attr void *(*start_routine)(void*) void *arg) { int rc = pthread_create(thread attr start_routine arg); assert(rc == 0); } void Pthread_join(pthread_t thread void **value_ptr) { int rc = pthread_join(thread value_ptr); assert(rc == 0); } #endif // __MYTHREADS_h__
Python import threading import ctypes # Function to lock a thread lock def Thread_lock(lock): lock.acquire() # Acquire the lock # No need for assert in Python acquire will raise an exception if it fails # Function to unlock a thread lock def Thread_unlock(lock): lock.release() # Release the lock # No need for assert in Python release will raise an exception if it fails # Function to create a thread def Thread_create(target args=()): thread = threading.Thread(target=target args=args) thread.start() # Start the thread # No need for assert in Python thread.start() will raise an exception if it fails # Function to join a thread def Thread_join(thread): thread.join() # Wait for the thread to finish # No need for assert in Python thread.join() will raise an exception if it fails
Sortida:
Thread Entered: 1
Thread Entered: 0
Actual Count: 2000000000 | Expected Count: 2000000000