Dividiu la matriu al llarg de l'eix especificat. Python
importnumpyasnpa=np.array([[1357911][24681012]])# horizontal splittingprint('Splitting along horizontal axis into 2 parts:n'np.hsplit(a2))# vertical splittingprint('nSplitting along vertical axis into 2 parts:n'np.vsplit(a2))
El terme broadcasting descriu com NumPy tracta les matrius amb diferents formes durant les operacions aritmètiques. Subjecte a certes restriccions, la matriu més petita s'"emet" a través de la matriu més gran perquè tinguin formes compatibles. La difusió proporciona un mitjà per vectoritzar les operacions de matriu de manera que es produeixi un bucle en C en lloc de Python. Ho fa sense fer còpies innecessàries de dades i normalment condueix a implementacions eficients d'algorismes. També hi ha casos en què la difusió és una mala idea perquè comporta un ús ineficient de la memòria que alenteix la computació. Les operacions NumPy es fan generalment element per element, cosa que requereix que dues matrius tinguin exactament la mateixa forma. La regla de difusió de Numpy relaxa aquesta restricció quan les formes de les matrius compleixen determinades restriccions. La regla de radiodifusió: Per transmetre, la mida dels eixos posteriors per a ambdues matrius en una operació ha de ser de la mateixa mida o un d'ells ha de ser un . Let us see some examples:
A(2-D array): 4 x 3 B(1-D array): 3 Result : 4 x 3
A(4-D array): 7 x 1 x 6 x 1 B(3-D array): 3 x 1 x 5 Result : 7 x 3 x 6 x 5
But this would be a mismatch:
A: 4 x 3 B: 4
The simplest broadcasting example occurs when an array and a scalar value are combined in an operation. Consider the example given below: Python
importnumpyasnpa=np.array([1.02.03.0])# Example 1b=2.0print(a*b)# Example 2c=[2.02.02.0]print(a*c)
Output:
[ 2. 4. 6.] [ 2. 4. 6.]
We can think of the scalar b being stretched during the arithmetic operation into an array with the same shape as a. The new elements in b as shown in above figure are simply copies of the original scalar. Although the stretching analogy is only conceptual. Numpy is smart enough to use the original scalar value without actually making copies so that broadcasting operations are as memory and computationally efficient as possible. Because Example 1 moves less memory (b is a scalar not an array) around during the multiplication it is about 10% faster than Example 2 using the standard numpy on Windows 2000 with one million element arrays! The figure below makes the concept more clear: In above example the scalar b is stretched to become an array of with the same shape as a so the shapes are compatible for element-by-element multiplication. Now let us see an example where both arrays get stretched. Python
En alguns casos, la difusió estira ambdues matrius per formar una matriu de sortida més gran que qualsevol de les matrius inicials.
Treballant amb datetime:
Numpy has core array data types which natively support datetime functionality. The data type is called datetime64 so named because datetime is already taken by the datetime library included in Python. Consider the example below for some examples: Python
importnumpyasnp# creating a datetoday=np.datetime64('2017-02-12')print('Date is:'today)print('Year is:'np.datetime64(today'Y'))# creating array of dates in a monthdates=np.arange('2017-02''2017-03'dtype='datetime64[D]')print('nDates of February 2017:n'dates)print('Today is February:'todayindates)# arithmetic operation on datesdur=np.datetime64('2017-05-22')-np.datetime64('2016-05-22')print('nNo. of days:'dur)print('No. of weeks:'np.timedelta64(dur'W'))# sorting datesa=np.array(['2017-02-12''2016-10-13''2019-05-22']dtype='datetime64')print('nDates in sorted order:'np.sort(a))
Output:
Date is: 2017-02-12 Year is: 2017 Dates of February 2017: ['2017-02-01' '2017-02-02' '2017-02-03' '2017-02-04' '2017-02-05' '2017-02-06' '2017-02-07' '2017-02-08' '2017-02-09' '2017-02-10' '2017-02-11' '2017-02-12' '2017-02-13' '2017-02-14' '2017-02-15' '2017-02-16' '2017-02-17' '2017-02-18' '2017-02-19' '2017-02-20' '2017-02-21' '2017-02-22' '2017-02-23' '2017-02-24' '2017-02-25' '2017-02-26' '2017-02-27' '2017-02-28'] Today is February: True No. of days: 365 days No. of weeks: 52 weeks Dates in sorted order: ['2016-10-13' '2017-02-12' '2019-05-22']
Àlgebra lineal en NumPy:
El mòdul d'àlgebra lineal de NumPy ofereix diversos mètodes per aplicar àlgebra lineal a qualsevol matriu numpy. Podeu trobar:
traça determinant de rang, etc. d'una matriu.
els propis valors o matrius
matriu i productes vectorials (punt interior exterior, etc. producte) exponenciació de matrius
resoldre equacions lineals o tensorials i molt més!
Consider the example below which explains how we can use NumPy to do some matrix operations. Python
importnumpyasnpA=np.array([[611][4-25][287]])print('Rank of A:'np.linalg.matrix_rank(A))print('nTrace of A:'np.trace(A))print('nDeterminant of A:'np.linalg.det(A))print('nInverse of A:n'np.linalg.inv(A))print('nMatrix A raised to power 3:n'np.linalg.matrix_power(A3))
Output:
Rank of A: 3 Trace of A: 11 Determinant of A: -306.0 Inverse of A: [[ 0.17647059 -0.00326797 -0.02287582] [ 0.05882353 -0.13071895 0.08496732] [-0.11764706 0.1503268 0.05228758]] Matrix A raised to power 3: [[336 162 228] [406 162 469] [698 702 905]]
Let us assume that we want to solve this linear equation set:
x + 2*y = 8 3*x + 4*y = 18
This problem can be solved using linalg.solver method as shown in example below: Python
importnumpyasnp# coefficientsa=np.array([[12][34]])# constantsb=np.array([818])print('Solution of linear equations:'np.linalg.solve(ab))
Output:
Solution of linear equations: [ 2. 3.]
Finally we see an example which shows how one can perform linear regression using least squares method. A linear regression line is of the form w1 x + w 2 = y i és la recta que minimitza la suma dels quadrats de la distància de cada punt de dades a la recta. Per tant, donats n parells de dades (xi yi), els paràmetres que busquem són w1 i w2 que minimitzen l'error: Let us have a look at the example below: Python
importnumpyasnpimportmatplotlib.pyplotasplt# x co-ordinatesx=np.arange(09)A=np.array([xnp.ones(9)])# linearly generated sequencey=[192020.521.522232325.524]# obtaining the parameters of regression linew=np.linalg.lstsq(A.Ty)[0]# plotting the lineline=w[0]*x+w[1]# regression lineplt.plot(xline'r-')plt.plot(xy'o')plt.show()
Output: Així que això porta a la conclusió d'aquesta sèrie de tutorials de NumPy. NumPy és una biblioteca de propòsit general àmpliament utilitzada que és el nucli de moltes altres biblioteques de computació com scipy scikit-learn tensorflow matplotlib opencv, etc. Tenir una comprensió bàsica de NumPy ajuda a tractar amb altres biblioteques de nivell superior de manera eficient! Referències: