Donat un n × n matriu binària juntament amb consistent en 0s i 1s . La teva tasca és trobar la mida del més gran '+' forma que només es pot formar utilitzant 1s .

A '+' La forma consisteix en una cel·la central amb quatre braços que s'estenen en les quatre direccions ( amunt avall esquerra i dreta ) tot romanent dins dels límits de la matriu. La mida d'a '+' es defineix com el nombre total de cèl·lules formant-lo incloent el centre i tots els braços.
La tasca és tornar el mida màxima de qualsevol vàlid '+' en juntament amb . Si no '+' es pot formar retorn .
Exemples:
hashmap en java
Entrada: amb = [ [0 1 1 0 1] [0 0 1 1 1] [1 1 1 1 1] [1 1 1 0 1] [0 1 1 1 0] ]
Sortida: 9
Explicació: Es pot formar un "+" amb una longitud de braç de 2 (2 cel·les en cada direcció + 1 centre) al centre de la catifa.
0 1 1 0 1
0 0 1 1 1
1 1 1 1 1
1 1 1 0 1
0 1 1 10
Mida total = (2 × 4) + 1 = 9
Entrada: amb = [ [0 1 1] [0 0 1] [1 1 1] ]
Sortida: 1
Explicació: Un "+" amb una longitud de braç de 0 (0 cel·les en cada direcció + 1 centre) es pot formar amb qualsevol dels 1.Entrada: amb = [ [0] ]
Sortida:
Explicació: No Es pot formar el signe ‘+’.
[Enfocament ingenu] - Considereu cada punt com a centre - O(n^4) Temps i O(n^4) Espai
Travessa les cel·les de la matriu una per una. Considereu cada punt travessat com el centre d'un plus i trobeu la mida del +. Per a cada element travessem esquerra dreta avall i amunt. El pitjor cas d'aquesta solució passa quan tenim tots els 1.
[Enfocament esperat] - Precàlcul de 4 matrius - O(n^2) Temps i O (n^2) Espai
El idea és mantenir quatre matrius auxiliars esquerra[][] dreta[][] superior[][] inferior[][] per emmagatzemar 1 consecutius en totes direccions. Per a cada cèl·lula (i j) a la matriu d'entrada emmagatzemem informació a continuació en aquests quatre matrius -
- esquerra (i j) emmagatzema el nombre màxim d'1 consecutius a esquerra de la cel·la (i j) inclosa la cel·la (i j).
- dret (i j) emmagatzema el nombre màxim d'1 consecutius a dret de la cel·la (i j) inclosa la cel·la (i j).
- superior (i j) emmagatzema el nombre màxim d'1 consecutius a superior de la cel·la (i j) inclosa la cel·la (i j).
- inferior (i j) emmagatzema el nombre màxim d'1 consecutius a inferior de la cel·la (i j) inclosa la cel·la (i j).
Després de calcular el valor de cada cel·la de les matrius anteriors, el més gran'+' estaria formada per una cel·la de matriu d'entrada que tingui un valor màxim considerant el mínim de ( esquerra (i j) dreta (i j) superior (i j) inferior (i j) )
Podem utilitzar Programació dinàmica per calcular la quantitat total d'1 consecutius en totes les direccions:
si mat(i j) == 1
esquerra (i j) = esquerra (i j - 1) + 1scan.nextstring javaaltrament a l'esquerra (i j) = 0
si mat(i j) == 1
top(i j) = top(i - 1 j) + 1;else top(i j) = 0;
si mat(i j) == 1
fons (i j) = fons (i + 1 j) + 1;else bottom(i j) = 0;
si mat(i j) == 1
dreta(i j) = dreta(i j + 1) + 1;sinó dreta(i j) = 0;
llista de matrius ordenada en java
A continuació es mostra la implementació de l'enfocament anterior:
C++// C++ program to find the largest '+' in a binary matrix // using Dynamic Programming #include using namespace std; int findLargestPlus(vector<vector<int>> &mat) { int n = mat.size(); vector<vector<int>> left(n vector<int>(n 0)); vector<vector<int>> right(n vector<int>(n 0)); vector<vector<int>> top(n vector<int>(n 0)); vector<vector<int>> bottom(n vector<int>(n 0)); // Fill left and top matrices for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (mat[i][j] == 1) { left[i][j] = (j == 0) ? 1 : left[i][j - 1] + 1; top[i][j] = (i == 0) ? 1 : top[i - 1][j] + 1; } } } // Fill right and bottom matrices for (int i = n - 1; i >= 0; i--) { for (int j = n - 1; j >= 0; j--) { if (mat[i][j] == 1) { right[i][j] = (j == n - 1) ? 1 : right[i][j + 1] + 1; bottom[i][j] = (i == n - 1) ? 1 : bottom[i + 1][j] + 1; } } } int maxPlusSize = 0; // Compute the maximum '+' size for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (mat[i][j] == 1) { int armLength = min({left[i][j] right[i][j] top[i][j] bottom[i][j]}); maxPlusSize = max(maxPlusSize (4 * (armLength - 1)) + 1); } } } return maxPlusSize; } int main() { // Hardcoded input matrix vector<vector<int>> mat = { {0 1 1 0 1} {0 0 1 1 1} {1 1 1 1 1} {1 1 1 0 1} {0 1 1 1 0} }; cout << findLargestPlus(mat) << endl; return 0; }
Java // Java program to find the largest '+' in a binary matrix // using Dynamic Programming class GfG { static int findLargestPlus(int[][] mat) { int n = mat.length; int[][] left = new int[n][n]; int[][] right = new int[n][n]; int[][] top = new int[n][n]; int[][] bottom = new int[n][n]; // Fill left and top matrices for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (mat[i][j] == 1) { left[i][j] = (j == 0) ? 1 : left[i][j - 1] + 1; top[i][j] = (i == 0) ? 1 : top[i - 1][j] + 1; } } } // Fill right and bottom matrices for (int i = n - 1; i >= 0; i--) { for (int j = n - 1; j >= 0; j--) { if (mat[i][j] == 1) { right[i][j] = (j == n - 1) ? 1 : right[i][j + 1] + 1; bottom[i][j] = (i == n - 1) ? 1 : bottom[i + 1][j] + 1; } } } int maxPlusSize = 0; // Compute the maximum '+' size for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (mat[i][j] == 1) { int armLength = Math.min(Math.min(left[i][j] right[i][j]) Math.min(top[i][j] bottom[i][j])); maxPlusSize = Math.max(maxPlusSize (4 * (armLength - 1)) + 1); } } } return maxPlusSize; } public static void main(String[] args) { // Hardcoded input matrix int[][] mat = { {0 1 1 0 1} {0 0 1 1 1} {1 1 1 1 1} {1 1 1 0 1} {0 1 1 1 0} }; System.out.println(findLargestPlus(mat)); } }
Python # Python program to find the largest '+' in a binary matrix # using Dynamic Programming def findLargestPlus(mat): n = len(mat) left = [[0] * n for i in range(n)] right = [[0] * n for i in range(n)] top = [[0] * n for i in range(n)] bottom = [[0] * n for i in range(n)] # Fill left and top matrices for i in range(n): for j in range(n): if mat[i][j] == 1: left[i][j] = 1 if j == 0 else left[i][j - 1] + 1 top[i][j] = 1 if i == 0 else top[i - 1][j] + 1 # Fill right and bottom matrices for i in range(n - 1 -1 -1): for j in range(n - 1 -1 -1): if mat[i][j] == 1: right[i][j] = 1 if j == n - 1 else right[i][j + 1] + 1 bottom[i][j] = 1 if i == n - 1 else bottom[i + 1][j] + 1 maxPlusSize = 0 # Compute the maximum '+' size for i in range(n): for j in range(n): if mat[i][j] == 1: armLength = min(left[i][j] right[i][j] top[i][j] bottom[i][j]) maxPlusSize = max(maxPlusSize (4 * (armLength - 1)) + 1) return maxPlusSize if __name__ == '__main__': # Hardcoded input matrix mat = [ [0 1 1 0 1] [0 0 1 1 1] [1 1 1 1 1] [1 1 1 0 1] [0 1 1 1 0] ] print(findLargestPlus(mat))
C# // C# program to find the largest '+' in a binary matrix // using Dynamic Programming using System; class GfG { static int FindLargestPlus(int[] mat) { int n = mat.GetLength(0); int[] left = new int[n n]; int[] right = new int[n n]; int[] top = new int[n n]; int[] bottom = new int[n n]; // Fill left and top matrices for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (mat[i j] == 1) { left[i j] = (j == 0) ? 1 : left[i j - 1] + 1; top[i j] = (i == 0) ? 1 : top[i - 1 j] + 1; } } } // Fill right and bottom matrices for (int i = n - 1; i >= 0; i--) { for (int j = n - 1; j >= 0; j--) { if (mat[i j] == 1) { right[i j] = (j == n - 1) ? 1 : right[i j + 1] + 1; bottom[i j] = (i == n - 1) ? 1 : bottom[i + 1 j] + 1; } } } int maxPlusSize = 0; // Compute the maximum '+' size for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (mat[i j] == 1) { int armLength = Math.Min(Math.Min(left[i j] right[i j]) Math.Min(top[i j] bottom[i j])); maxPlusSize = Math.Max(maxPlusSize (4 * (armLength - 1)) + 1); } } } return maxPlusSize; } public static void Main() { // Hardcoded input matrix int[] mat = { {0 1 1 0 1} {0 0 1 1 1} {1 1 1 1 1} {1 1 1 0 1} {0 1 1 1 0} }; Console.WriteLine(FindLargestPlus(mat)); } }
JavaScript // JavaScript program to find the largest '+' in a binary matrix // using Dynamic Programming function findLargestPlus(mat) { let n = mat.length; let left = Array.from({ length: n } () => Array(n).fill(0)); let right = Array.from({ length: n } () => Array(n).fill(0)); let top = Array.from({ length: n } () => Array(n).fill(0)); let bottom = Array.from({ length: n } () => Array(n).fill(0)); // Fill left and top matrices for (let i = 0; i < n; i++) { for (let j = 0; j < n; j++) { if (mat[i][j] === 1) { left[i][j] = (j === 0) ? 1 : left[i][j - 1] + 1; top[i][j] = (i === 0) ? 1 : top[i - 1][j] + 1; } } } // Fill right and bottom matrices for (let i = n - 1; i >= 0; i--) { for (let j = n - 1; j >= 0; j--) { if (mat[i][j] === 1) { right[i][j] = (j === n - 1) ? 1 : right[i][j + 1] + 1; bottom[i][j] = (i === n - 1) ? 1 : bottom[i + 1][j] + 1; } } } let maxPlusSize = 0; // Compute the maximum '+' size for (let i = 0; i < n; i++) { for (let j = 0; j < n; j++) { if (mat[i][j] === 1) { let armLength = Math.min(left[i][j] right[i][j] top[i][j] bottom[i][j]); maxPlusSize = Math.max(maxPlusSize (4 * (armLength - 1)) + 1); } } } return maxPlusSize; } // Hardcoded input matrix let mat = [ [0 1 1 0 1] [0 0 1 1 1] [1 1 1 1 1] [1 1 1 0 1] [0 1 1 1 0] ]; console.log(findLargestPlus(mat));
Sortida
9
Complexitat temporal: O(n²) a causa de quatre passades per calcular les matrius direccionals i una passada final per determinar el "+" més gran. Cada passada triga O(n²) temps que condueix a una complexitat global de O(n²).
Complexitat espacial: O(n²) a causa de quatre matrius auxiliars (esquerra dreta superior inferior) que consumeixen O(n²) espai addicional.