Donats un nombre 'n' i un nombre n ordena els nombres utilitzant Concurrent Fusionar Ordenar. (Suggeriment: proveu d'utilitzar les trucades del sistema shmget shmat).
Part 1: L'algorisme (COM?)
Feu de manera recursiva dos processos fills un per a la meitat esquerra un de la meitat dreta. Si el nombre d'elements de la matriu d'un procés és inferior a 5, feu a Ordenació d'inserció . Aleshores, el pare dels dos fills fusiona el resultat i torna al pare i així successivament. Però com ho fas concurrent?
Part 2: El lògic (PER QUÈ?)
La part important de la solució a aquest problema no és algorítmica sinó explicar conceptes de sistema operatiu i nucli.
Per aconseguir una ordenació concurrent necessitem una manera de fer que dos processos funcionin a la mateixa matriu alhora. Per facilitar les coses, Linux ofereix moltes trucades al sistema mitjançant punts finals d'API simples. Dos d'ells ho són shmget() (per a l'assignació de memòria compartida) i shmat () (per a operacions de memòria compartida). Creem un espai de memòria compartida entre el procés fill que bifurquem. Cada segment es divideix en fill esquerre i dret, que s'ordena segons la part interessant perquè estan treballant simultàniament. El shmget() demana al nucli que assigni a pàgina compartida per als dos processos.
Per què el tradicional fork() no funciona?
La resposta rau en què fa realment fork(). Des de la documentació 'fork() crea un nou procés duplicant el procés de crida'. El procés fill i el procés pare s'executen en espais de memòria separats. En el moment de fork() ambdós espais de memòria tenen el mateix contingut. La memòria escriu els canvis del descriptor de fitxers (fd), etc. realitzats per un dels processos no afecten l'altre. Per tant, necessitem un segment de memòria compartida.
#include #include #include #include #include #include #include #include void insertionSort(int arr[] int n); void merge(int a[] int l1 int h1 int h2); void mergeSort(int a[] int l int h) { int i len = (h - l + 1); // Using insertion sort for small sized array if (len <= 5) { insertionSort(a + l len); return; } pid_t lpid rpid; lpid = fork(); if (lpid < 0) { // Lchild proc not created perror('Left Child Proc. not createdn'); _exit(-1); } else if (lpid == 0) { mergeSort(a l l + len / 2 - 1); _exit(0); } else { rpid = fork(); if (rpid < 0) { // Rchild proc not created perror('Right Child Proc. not createdn'); _exit(-1); } else if (rpid == 0) { mergeSort(a l + len / 2 h); _exit(0); } } int status; // Wait for child processes to finish waitpid(lpid &status 0); waitpid(rpid &status 0); // Merge the sorted subarrays merge(a l l + len / 2 - 1 h); } /* Function to sort an array using insertion sort*/ void insertionSort(int arr[] int n) { int i key j; for (i = 1; i < n; i++) { key = arr[i]; j = i - 1; /* Move elements of arr[0..i-1] that are greater than key to one position ahead of their current position */ while (j >= 0 && arr[j] > key) { arr[j + 1] = arr[j]; j = j - 1; } arr[j + 1] = key; } } // Method to merge sorted subarrays void merge(int a[] int l1 int h1 int h2) { // We can directly copy the sorted elements // in the final array no need for a temporary // sorted array. int count = h2 - l1 + 1; int sorted[count]; int i = l1 k = h1 + 1 m = 0; while (i <= h1 && k <= h2) { if (a[i] < a[k]) sorted[m++] = a[i++]; else if (a[k] < a[i]) sorted[m++] = a[k++]; else if (a[i] == a[k]) { sorted[m++] = a[i++]; sorted[m++] = a[k++]; } } while (i <= h1) sorted[m++] = a[i++]; while (k <= h2) sorted[m++] = a[k++]; int arr_count = l1; for (i = 0; i < count; i++ l1++) a[l1] = sorted[i]; } // To check if array is actually sorted or not void isSorted(int arr[] int len) { if (len == 1) { std::cout << 'Sorting Done Successfully' << std::endl; return; } int i; for (i = 1; i < len; i++) { if (arr[i] < arr[i - 1]) { std::cout << 'Sorting Not Done' << std::endl; return; } } std::cout << 'Sorting Done Successfully' << std::endl; return; } // To fill random values in array for testing // purpose void fillData(int a[] int len) { // Create random arrays int i; for (i = 0; i < len; i++) a[i] = rand(); return; } // Driver code int main() { int shmid; key_t key = IPC_PRIVATE; int *shm_array; int length = 128; // Calculate segment length size_t SHM_SIZE = sizeof(int) * length; // Create the segment. if ((shmid = shmget(key SHM_SIZE IPC_CREAT | 0666)) < 0) { perror('shmget'); _exit(1); } // Now we attach the segment to our data space. if ((shm_array = (int *)shmat(shmid NULL 0)) == (int *)-1) { perror('shmat'); _exit(1); } // Create a random array of given length srand(time(NULL)); fillData(shm_array length); // Sort the created array mergeSort(shm_array 0 length - 1); // Check if array is sorted or not isSorted(shm_array length); /* Detach from the shared memory now that we are done using it. */ if (shmdt(shm_array) == -1) { perror('shmdt'); _exit(1); } /* Delete the shared memory segment. */ if (shmctl(shmid IPC_RMID NULL) == -1) { perror('shmctl'); _exit(1); } return 0; }
Java import java.util.Arrays; import java.util.Random; import java.util.concurrent.ForkJoinPool; import java.util.concurrent.RecursiveAction; public class ConcurrentMergeSort { // Method to merge sorted subarrays private static void merge(int[] a int low int mid int high) { int[] temp = new int[high - low + 1]; int i = low j = mid + 1 k = 0; while (i <= mid && j <= high) { if (a[i] <= a[j]) { temp[k++] = a[i++]; } else { temp[k++] = a[j++]; } } while (i <= mid) { temp[k++] = a[i++]; } while (j <= high) { temp[k++] = a[j++]; } System.arraycopy(temp 0 a low temp.length); } // RecursiveAction for fork/join framework static class SortTask extends RecursiveAction { private final int[] a; private final int low high; SortTask(int[] a int low int high) { this.a = a; this.low = low; this.high = high; } @Override protected void compute() { if (high - low <= 5) { Arrays.sort(a low high + 1); } else { int mid = low + (high - low) / 2; invokeAll(new SortTask(a low mid) new SortTask(a mid + 1 high)); merge(a low mid high); } } } // Method to check if array is sorted private static boolean isSorted(int[] a) { for (int i = 0; i < a.length - 1; i++) { if (a[i] > a[i + 1]) { return false; } } return true; } // Method to fill array with random numbers private static void fillData(int[] a) { Random rand = new Random(); for (int i = 0; i < a.length; i++) { a[i] = rand.nextInt(); } } public static void main(String[] args) { int length = 128; int[] a = new int[length]; fillData(a); ForkJoinPool pool = new ForkJoinPool(); pool.invoke(new SortTask(a 0 a.length - 1)); if (isSorted(a)) { System.out.println('Sorting Done Successfully'); } else { System.out.println('Sorting Not Done'); } } }
Python3 import numpy as np import multiprocessing as mp import time def insertion_sort(arr): n = len(arr) for i in range(1 n): key = arr[i] j = i - 1 while j >= 0 and arr[j] > key: arr[j + 1] = arr[j] j -= 1 arr[j + 1] = key def merge(arr l mid r): n1 = mid - l + 1 n2 = r - mid L = arr[l:l + n1].copy() R = arr[mid + 1:mid + 1 + n2].copy() i = j = 0 k = l while i < n1 and j < n2: if L[i] <= R[j]: arr[k] = L[i] i += 1 else: arr[k] = R[j] j += 1 k += 1 while i < n1: arr[k] = L[i] i += 1 k += 1 while j < n2: arr[k] = R[j] j += 1 k += 1 def merge_sort(arr l r): if l < r: if r - l + 1 <= 5: insertion_sort(arr) else: mid = (l + r) // 2 p1 = mp.Process(target=merge_sort args=(arr l mid)) p2 = mp.Process(target=merge_sort args=(arr mid + 1 r)) p1.start() p2.start() p1.join() p2.join() merge(arr l mid r) def is_sorted(arr): for i in range(1 len(arr)): if arr[i] < arr[i - 1]: return False return True def fill_data(arr): np.random.seed(0) arr[:] = np.random.randint(0 1000 size=len(arr)) if __name__ == '__main__': length = 128 shm_array = mp.Array('i' length) fill_data(shm_array) start_time = time.time() merge_sort(shm_array 0 length - 1) end_time = time.time() if is_sorted(shm_array): print('Sorting Done Successfully') else: print('Sorting Not Done') print('Time taken:' end_time - start_time)
JavaScript // Importing required modules const { Worker isMainThread parentPort workerData } = require('worker_threads'); // Function to merge sorted subarrays function merge(a low mid high) { let temp = new Array(high - low + 1); let i = low j = mid + 1 k = 0; while (i <= mid && j <= high) { if (a[i] <= a[j]) { temp[k++] = a[i++]; } else { temp[k++] = a[j++]; } } while (i <= mid) { temp[k++] = a[i++]; } while (j <= high) { temp[k++] = a[j++]; } for (let p = 0; p < temp.length; p++) { a[low + p] = temp[p]; } } // Function to check if array is sorted function isSorted(a) { for (let i = 0; i < a.length - 1; i++) { if (a[i] > a[i + 1]) { return false; } } return true; } // Function to fill array with random numbers function fillData(a) { for (let i = 0; i < a.length; i++) { a[i] = Math.floor(Math.random() * 1000); } } // Function to sort the array using merge sort function sortArray(a low high) { if (high - low <= 5) { a.sort((a b) => a - b); } else { let mid = low + Math.floor((high - low) / 2); sortArray(a low mid); sortArray(a mid + 1 high); merge(a low mid high); } } // Main function function main() { let length = 128; let a = new Array(length); fillData(a); sortArray(a 0 a.length - 1); if (isSorted(a)) { console.log('Sorting Done Successfully'); } else { console.log('Sorting Not Done'); } } main();
Sortida:
Sorting Done Successfully
Complexitat temporal: O(N log N)
Espai auxiliar: O (N)
Millores de rendiment?
Intenta cronometrar el codi i compara el seu rendiment amb el codi seqüencial tradicional. Us sorprendrà saber millor el rendiment de l'ordenació seqüencial!
Quan diem que el fill esquerre accedeix a la matriu esquerra, la matriu es carrega a la memòria cau d'un processador. Ara, quan s'accedeix a la matriu dreta (a causa dels accessos concurrents) hi ha una falta de memòria cau, ja que la memòria cau s'omple amb el segment esquerre i després el segment dret es copia a la memòria cau. Aquest procés d'anada i tornada continua i degrada el rendiment fins a tal nivell que té un rendiment més baix que el codi seqüencial.
Hi ha maneres de reduir els errors de memòria cau controlant el flux de treball del codi. Però no es poden evitar del tot!