Requisits previs: Números/números de Grundy i Mex
Ja hem vist al set 2 (https://www.geeksforgeeks.org/dsa/combinatorial-game-theory-set-2-game-nim/) que podem trobar qui guanya en un joc de Nim sense jugar realment al joc.
Suposem que canviem una mica el clàssic joc NIM. Aquesta vegada, cada jugador només pot eliminar 1 2 o 3 pedres (i no qualsevol nombre de pedres com en el joc clàssic de NIM). Podem predir qui guanyarà?
Sí, podem predir el guanyador mitjançant el teorema de Sprague-Grundy.
Què és el teorema de Sprague-Grundy?
Suposem que hi ha un joc compost (més d’un sub-joc) format per N sub-jocs i dos jugadors A i B. A continuació, Sprague-Grundy Teorem diu que si tant A com B juguen de manera òptima (és a dir, no cometen cap error), el jugador comença primer a guanyar si el xor del nombre de posició més gruixut de cada sub-joc al començament del joc és no zero. En cas contrari, si el XOR avalua a zero, el jugador A perdrà definitivament, no importa el que sigui.
Com aplicar el teorema de Sprague Grundy?
Podem aplicar el teorema de Sprague-Grundy en qualsevol Joc imparcial i resoldre -ho. Els passos bàsics es mostren de la manera següent:
- Trenqueu el joc compost en sub-jocs.
- A continuació, per a cada sub-joc calculeu el número de Grundy en aquesta posició.
- A continuació, calculeu la XOR de tots els números de Grundy calculats.
- Si el valor XOR no és zero, el jugador que farà el torn (primer jugador) guanyarà més que estigui destinat a perdre, no importa el que sigui.
Exemple de joc: El joc comença amb 3 piles amb 3 4 i 5 pedres i el jugador que es mogui pot prendre qualsevol nombre positiu de pedres fins a 3 només de qualsevol de les piles [sempre que la pila tingui tanta quantitat de pedres]. L’últim jugador a moure victòries. Quin jugador guanya el joc assumint que els dos jugadors juguen de manera òptima?
Com saber qui guanyarà aplicant el teorema de Sprague-Grundy?
Com podem veure que aquest joc està format per diversos sub-jocs.
Primer pas: Els sub-jocs es poden considerar com cada piles.
Segon pas: Veiem des de la taula següent que
Grundy(3) = 3 Grundy(4) = 0 Grundy(5) = 1
Ja hem vist com calcular els números de Grundy d’aquest joc al previ Article.
Tercer pas: El xor de 3 0 1 = 2
Quart pas: Com que Xor és un nombre diferent de zero, podem dir que el primer jugador guanyarà.
A continuació, es mostra el programa que implementa per sobre de 4 passos.
C++/* Game Description- 'A game is played between two players and there are N piles of stones such that each pile has certain number of stones. On his/her turn a player selects a pile and can take any non-zero number of stones upto 3 (i.e- 123) The player who cannot move is considered to lose the game (i.e. one who take the last stone is the winner). Can you find which player wins the game if both players play optimally (they don't make any mistake)? ' A Dynamic Programming approach to calculate Grundy Number and Mex and find the Winner using Sprague - Grundy Theorem. */ #include using namespace std; /* piles[] -> Array having the initial count of stones/coins in each piles before the game has started. n -> Number of piles Grundy[] -> Array having the Grundy Number corresponding to the initial position of each piles in the game The piles[] and Grundy[] are having 0-based indexing*/ #define PLAYER1 1 #define PLAYER2 2 // A Function to calculate Mex of all the values in that set int calculateMex(unordered_set<int> Set) { int Mex = 0; while (Set.find(Mex) != Set.end()) Mex++; return (Mex); } // A function to Compute Grundy Number of 'n' int calculateGrundy(int n int Grundy[]) { Grundy[0] = 0; Grundy[1] = 1; Grundy[2] = 2; Grundy[3] = 3; if (Grundy[n] != -1) return (Grundy[n]); unordered_set<int> Set; // A Hash Table for (int i=1; i<=3; i++) Set.insert (calculateGrundy (n-i Grundy)); // Store the result Grundy[n] = calculateMex (Set); return (Grundy[n]); } // A function to declare the winner of the game void declareWinner(int whoseTurn int piles[] int Grundy[] int n) { int xorValue = Grundy[piles[0]]; for (int i=1; i<=n-1; i++) xorValue = xorValue ^ Grundy[piles[i]]; if (xorValue != 0) { if (whoseTurn == PLAYER1) printf('Player 1 will winn'); else printf('Player 2 will winn'); } else { if (whoseTurn == PLAYER1) printf('Player 2 will winn'); else printf('Player 1 will winn'); } return; } // Driver program to test above functions int main() { // Test Case 1 int piles[] = {3 4 5}; int n = sizeof(piles)/sizeof(piles[0]); // Find the maximum element int maximum = *max_element(piles piles + n); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy[maximum + 1]; memset(Grundy -1 sizeof (Grundy)); // Calculate Grundy Value of piles[i] and store it for (int i=0; i<=n-1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER1 piles Grundy n); /* Test Case 2 int piles[] = {3 8 2}; int n = sizeof(piles)/sizeof(piles[0]); int maximum = *max_element (piles piles + n); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy [maximum + 1]; memset(Grundy -1 sizeof (Grundy)); // Calculate Grundy Value of piles[i] and store it for (int i=0; i<=n-1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER2 piles Grundy n); */ return (0); }
Java import java.util.*; /* Game Description- 'A game is played between two players and there are N piles of stones such that each pile has certain number of stones. On his/her turn a player selects a pile and can take any non-zero number of stones upto 3 (i.e- 123) The player who cannot move is considered to lose the game (i.e. one who take the last stone is the winner). Can you find which player wins the game if both players play optimally (they don't make any mistake)? ' A Dynamic Programming approach to calculate Grundy Number and Mex and find the Winner using Sprague - Grundy Theorem. */ class GFG { /* piles[] -> Array having the initial count of stones/coins in each piles before the game has started. n -> Number of piles Grundy[] -> Array having the Grundy Number corresponding to the initial position of each piles in the game The piles[] and Grundy[] are having 0-based indexing*/ static int PLAYER1 = 1; static int PLAYER2 = 2; // A Function to calculate Mex of all the values in that set static int calculateMex(HashSet<Integer> Set) { int Mex = 0; while (Set.contains(Mex)) Mex++; return (Mex); } // A function to Compute Grundy Number of 'n' static int calculateGrundy(int n int Grundy[]) { Grundy[0] = 0; Grundy[1] = 1; Grundy[2] = 2; Grundy[3] = 3; if (Grundy[n] != -1) return (Grundy[n]); // A Hash Table HashSet<Integer> Set = new HashSet<Integer>(); for (int i = 1; i <= 3; i++) Set.add(calculateGrundy (n - i Grundy)); // Store the result Grundy[n] = calculateMex (Set); return (Grundy[n]); } // A function to declare the winner of the game static void declareWinner(int whoseTurn int piles[] int Grundy[] int n) { int xorValue = Grundy[piles[0]]; for (int i = 1; i <= n - 1; i++) xorValue = xorValue ^ Grundy[piles[i]]; if (xorValue != 0) { if (whoseTurn == PLAYER1) System.out.printf('Player 1 will winn'); else System.out.printf('Player 2 will winn'); } else { if (whoseTurn == PLAYER1) System.out.printf('Player 2 will winn'); else System.out.printf('Player 1 will winn'); } return; } // Driver code public static void main(String[] args) { // Test Case 1 int piles[] = {3 4 5}; int n = piles.length; // Find the maximum element int maximum = Arrays.stream(piles).max().getAsInt(); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy[] = new int[maximum + 1]; Arrays.fill(Grundy -1); // Calculate Grundy Value of piles[i] and store it for (int i = 0; i <= n - 1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER1 piles Grundy n); /* Test Case 2 int piles[] = {3 8 2}; int n = sizeof(piles)/sizeof(piles[0]); int maximum = *max_element (piles piles + n); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy [maximum + 1]; memset(Grundy -1 sizeof (Grundy)); // Calculate Grundy Value of piles[i] and store it for (int i=0; i<=n-1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER2 piles Grundy n); */ } } // This code is contributed by PrinciRaj1992
Python3 ''' Game Description- 'A game is played between two players and there are N piles of stones such that each pile has certain number of stones. On his/her turn a player selects a pile and can take any non-zero number of stones upto 3 (i.e- 123) The player who cannot move is considered to lose the game (i.e. one who take the last stone is the winner). Can you find which player wins the game if both players play optimally (they don't make any mistake)? ' A Dynamic Programming approach to calculate Grundy Number and Mex and find the Winner using Sprague - Grundy Theorem. piles[] -> Array having the initial count of stones/coins in each piles before the game has started. n -> Number of piles Grundy[] -> Array having the Grundy Number corresponding to the initial position of each piles in the game The piles[] and Grundy[] are having 0-based indexing''' PLAYER1 = 1 PLAYER2 = 2 # A Function to calculate Mex of all # the values in that set def calculateMex(Set): Mex = 0; while (Mex in Set): Mex += 1 return (Mex) # A function to Compute Grundy Number of 'n' def calculateGrundy(n Grundy): Grundy[0] = 0 Grundy[1] = 1 Grundy[2] = 2 Grundy[3] = 3 if (Grundy[n] != -1): return (Grundy[n]) # A Hash Table Set = set() for i in range(1 4): Set.add(calculateGrundy(n - i Grundy)) # Store the result Grundy[n] = calculateMex(Set) return (Grundy[n]) # A function to declare the winner of the game def declareWinner(whoseTurn piles Grundy n): xorValue = Grundy[piles[0]]; for i in range(1 n): xorValue = (xorValue ^ Grundy[piles[i]]) if (xorValue != 0): if (whoseTurn == PLAYER1): print('Player 1 will winn'); else: print('Player 2 will winn'); else: if (whoseTurn == PLAYER1): print('Player 2 will winn'); else: print('Player 1 will winn'); # Driver code if __name__=='__main__': # Test Case 1 piles = [ 3 4 5 ] n = len(piles) # Find the maximum element maximum = max(piles) # An array to cache the sub-problems so that # re-computation of same sub-problems is avoided Grundy = [-1 for i in range(maximum + 1)]; # Calculate Grundy Value of piles[i] and store it for i in range(n): calculateGrundy(piles[i] Grundy); declareWinner(PLAYER1 piles Grundy n); ''' Test Case 2 int piles[] = {3 8 2}; int n = sizeof(piles)/sizeof(piles[0]); int maximum = *max_element (piles piles + n); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy [maximum + 1]; memset(Grundy -1 sizeof (Grundy)); // Calculate Grundy Value of piles[i] and store it for (int i=0; i<=n-1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER2 piles Grundy n); ''' # This code is contributed by rutvik_56
C# using System; using System.Linq; using System.Collections.Generic; /* Game Description- 'A game is played between two players and there are N piles of stones such that each pile has certain number of stones. On his/her turn a player selects a pile and can take any non-zero number of stones upto 3 (i.e- 123) The player who cannot move is considered to lose the game (i.e. one who take the last stone is the winner). Can you find which player wins the game if both players play optimally (they don't make any mistake)? ' A Dynamic Programming approach to calculate Grundy Number and Mex and find the Winner using Sprague - Grundy Theorem. */ class GFG { /* piles[] -> Array having the initial count of stones/coins in each piles before the game has started. n -> Number of piles Grundy[] -> Array having the Grundy Number corresponding to the initial position of each piles in the game The piles[] and Grundy[] are having 0-based indexing*/ static int PLAYER1 = 1; //static int PLAYER2 = 2; // A Function to calculate Mex of all the values in that set static int calculateMex(HashSet<int> Set) { int Mex = 0; while (Set.Contains(Mex)) Mex++; return (Mex); } // A function to Compute Grundy Number of 'n' static int calculateGrundy(int n int []Grundy) { Grundy[0] = 0; Grundy[1] = 1; Grundy[2] = 2; Grundy[3] = 3; if (Grundy[n] != -1) return (Grundy[n]); // A Hash Table HashSet<int> Set = new HashSet<int>(); for (int i = 1; i <= 3; i++) Set.Add(calculateGrundy (n - i Grundy)); // Store the result Grundy[n] = calculateMex (Set); return (Grundy[n]); } // A function to declare the winner of the game static void declareWinner(int whoseTurn int []piles int []Grundy int n) { int xorValue = Grundy[piles[0]]; for (int i = 1; i <= n - 1; i++) xorValue = xorValue ^ Grundy[piles[i]]; if (xorValue != 0) { if (whoseTurn == PLAYER1) Console.Write('Player 1 will winn'); else Console.Write('Player 2 will winn'); } else { if (whoseTurn == PLAYER1) Console.Write('Player 2 will winn'); else Console.Write('Player 1 will winn'); } return; } // Driver code static void Main() { // Test Case 1 int []piles = {3 4 5}; int n = piles.Length; // Find the maximum element int maximum = piles.Max(); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int []Grundy = new int[maximum + 1]; Array.Fill(Grundy -1); // Calculate Grundy Value of piles[i] and store it for (int i = 0; i <= n - 1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER1 piles Grundy n); /* Test Case 2 int piles[] = {3 8 2}; int n = sizeof(piles)/sizeof(piles[0]); int maximum = *max_element (piles piles + n); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy [maximum + 1]; memset(Grundy -1 sizeof (Grundy)); // Calculate Grundy Value of piles[i] and store it for (int i=0; i<=n-1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER2 piles Grundy n); */ } } // This code is contributed by mits
JavaScript <script> /* Game Description- 'A game is played between two players and there are N piles of stones such that each pile has certain number of stones. On his/her turn a player selects a pile and can take any non-zero number of stones upto 3 (i.e- 123) The player who cannot move is considered to lose the game (i.e. one who take the last stone is the winner). Can you find which player wins the game if both players play optimally (they don't make any mistake)? ' A Dynamic Programming approach to calculate Grundy Number and Mex and find the Winner using Sprague - Grundy Theorem. */ /* piles[] -> Array having the initial count of stones/coins in each piles before the game has started. n -> Number of piles Grundy[] -> Array having the Grundy Number corresponding to the initial position of each piles in the game The piles[] and Grundy[] are having 0-based indexing*/ let PLAYER1 = 1; let PLAYER2 = 2; // A Function to calculate Mex of all the values in that set function calculateMex(Set) { let Mex = 0; while (Set.has(Mex)) Mex++; return (Mex); } // A function to Compute Grundy Number of 'n' function calculateGrundy(nGrundy) { Grundy[0] = 0; Grundy[1] = 1; Grundy[2] = 2; Grundy[3] = 3; if (Grundy[n] != -1) return (Grundy[n]); // A Hash Table let Set = new Set(); for (let i = 1; i <= 3; i++) Set.add(calculateGrundy (n - i Grundy)); // Store the result Grundy[n] = calculateMex (Set); return (Grundy[n]); } // A function to declare the winner of the game function declareWinner(whoseTurnpilesGrundyn) { let xorValue = Grundy[piles[0]]; for (let i = 1; i <= n - 1; i++) xorValue = xorValue ^ Grundy[piles[i]]; if (xorValue != 0) { if (whoseTurn == PLAYER1) document.write('Player 1 will win
'); else document.write('Player 2 will win
'); } else { if (whoseTurn == PLAYER1) document.write('Player 2 will win
'); else document.write('Player 1 will win
'); } return; } // Driver code // Test Case 1 let piles = [3 4 5]; let n = piles.length; // Find the maximum element let maximum = Math.max(...piles) // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided let Grundy = new Array(maximum + 1); for(let i=0;i<maximum+1;i++) Grundy[i]=0; // Calculate Grundy Value of piles[i] and store it for (let i = 0; i <= n - 1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER1 piles Grundy n); /* Test Case 2 int piles[] = {3 8 2}; int n = sizeof(piles)/sizeof(piles[0]); int maximum = *max_element (piles piles + n); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy [maximum + 1]; memset(Grundy -1 sizeof (Grundy)); // Calculate Grundy Value of piles[i] and store it for (int i=0; i<=n-1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER2 piles Grundy n); */ // This code is contributed by avanitrachhadiya2155 </script>
Sortida:
Player 1 will win
Complexitat del temps: O (n^2) on n és el nombre màxim de pedres en una pila.
Complexitat espacial: O (n) Com que la matriu Grundy s’utilitza per emmagatzemar els resultats de subproblemes per evitar càlculs redundants i es necessita l’espai O (N).
Referències:
https://en.wikipedia.org/wiki/sprague%2%80%93grundy_theorem
Exercici als lectors: Considereu el joc següent.
Dos jugadors juguen un joc amb N enters A1 A2 .. An. Al seu torn, un jugador selecciona un nombre enter el divideix per 2 3 o 6 i després agafa el terra. Si el nombre enter es converteix en 0, s'elimina. L’últim jugador a moure victòries. Quin jugador guanya el joc si els dos jugadors juguen de manera òptima?
Suggeriment: vegeu l'exemple 3 de previ Article.